Effect of cyclic chain architecture on properties of dilute solutions of polyethylene from molecular dynamics simulations

نویسندگان

  • Seung Soon Jang
  • Tahir Çağin
  • William A. Goddard
چکیده

We have used molecular dynamics methods to investigate the effects of cyclic chain architecture on the properties of dilute solutions. In order to include solvent effects in estimating these properties, we use a van der Waals scaling factor determined for each solvent by matching to the theta condition. We predict that the theta temperature ~u! of cyclic PE ~c-PE! is ;10% lower than for the linear case ~l-PE!. This can be compared to the experimental results for polystyrene ~PS!, where u for cyclic PS is 2% lower. For conditions corresponding to n-pentane solvent, we predict that ^Rg &cyclic /^Rg & linear is 0.59 for all temperatures above 350 K. The deviation from the ratio of 0.50–0.53 expected from analytic theory is due to the competition between chain stiffness and excluded volume effects. To calculate the intrinsic viscosity of c-PE and l-PE we extended the Bloomfield–Zimm type theory to include chain stiffness corrections. We find that for the theta temperature, the ratio of viscosities for c-PE and l-PE is 0.71, which is 7% higher than the value of 0.66 from the freely jointed chain model. This difference is caused by the larger value of ^Rg &cyclic /^Rg & linear from the simulations. © 2003 American Institute of Physics. @DOI: 10.1063/1.1580802#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetorheological and Volumetric Properties of Starch and Polyethylene Glycol Solutions in the Presence of NiO Nanoparticles

The effect of NiO nanoparticles on the rheological and volumetric properties of dilute solutions of starch-NaOH-H2O, PEG400-PEG2000 and PEG400-PEG6000 were investigated. Achieve this aim requires to prepare the stable nanofluids. Therefore, nanoparticles of NiO were added to these solutions and dispersed by a shaker and an ultrasonic bath for making the homogeneous nanofluids. The UV-Vis spectr...

متن کامل

Temperature Effect on Mechanical Properties of Top Neck Mollusk Shells Nano-Composite by Molecular Dynamics Simulations and Nano-Indentation Experiments

Discovering the mechanical properties of biological composite structures at the Nano-scale is much interesting today. Top Neck mollusk shells are amongst biomaterials Nano-Composite that their layered structures are composed of organic and inorganic materials. Since the Nano indentation process is known as an efficient method to determine mechanical properties like elastic modulus and hardness ...

متن کامل

Effect of chain architecture on the compression behavior of nanoscale polyethylene particles

Polymeric particles with controlled internal molecular architectures play an important role as constituents in many composite materials for a number of emerging applications. In this study, classical molecular dynamics techniques are employed to predict the effect of chain architecture on the compression behavior of nanoscale polyethylene particles subjected to simulated flat-punch testing. Cro...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects

Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003